Fuzzy Multiple Attribute Decision Making Methods And Applications Lecture Notes In Economics And Mathematical Systems | 451edc902043f155565cd9f0f1ca646


Fuzzy Outranking Methods for Multiple Attribute Decision Making

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is a popular strategy for Multi-Attribute Decision Making (MADM). In this paper, we extend the TOPSIS strategy of MADM problems in trapezoidal neutrosophic number environment.

Fuzzy Multi-attribute Decision-making

Contributions of Selected Indian Researchers to Multi Attribute Decision Making in Neutrosophic Environment: An Overview

Fuzzy information in venture capital can be well expressed by neutrosophic numbers, and TODIM method is an effective tool for multi-attribute decision-making. The distance measure is an essential step in TODIM method. The keystone of this paper is to define several new distance measures, in particular the improved interval neutrosophic Euclidean distance, and these measures are applied in the TODIM method for multi-attribute decision-making.

Fuzzy Multi-Criteria Decision Making

Aggregation Operators

This book introduces readers to the novel concept of spherical fuzzy sets, showing how these sets can be applied in practice to solve various decision-making problems. It also demonstrates that these sets provide a larger preference volume in 3D space for decision-makers. Written by authoritative researchers, the various chapters cover a large amount of theoretical and practical information, allowing readers to gain an extensive understanding of both the fundamentals and applications of spherical fuzzy sets in intelligent decision-making and mathematical programming.
Fuzzy Multiple Attribute Decision Making

This book introduces readers to the latest advances in and approaches to intuitionistic fuzzy decision-making methods. To do so, it explores a range of applications to practical decision-making problems, together with representative case studies. Examining a host of decision-making methods, most of which are based on intuitionistic fuzzy aggregation operators, its goal is to offer readers a new way to study decision-making methods in the intuitionistic fuzzy environment. Chiefly intended for practitioners and researchers working in the areas of risk management, decision-making under uncertainty, and operational research, the book can also be used as supplementary material for graduate and senior undergraduate courses in these areas.

Decision Making in Manufacturing Environment Using Graph Theory and Fuzzy Multiple Attribute Decision Making Methods

Clear and effective instruction on MADM methods for students, researchers, and practitioners. A Handbook on Multi-Attribute Decision-Making Methods describes multi-attribute decision-making (MADM) methods and provides step-by-step guidelines for applying them. The authors describe the most important MADM methods and provide an assessment of their performance in solving problems across disciplines. After offering an overview of decision-making and its fundamental concepts, this book covers 20 leading MADM methods and contains an appendix on weight assignment methods. Chapters are arranged with optimal learning in mind, so you can easily engage with the content found in each chapter. Dedicated readers may go through the entire book to gain a deep understanding of MADM methods and their theoretical foundation, and others may choose to review only specific chapters. Each standalone chapter contains a brief description of prerequisite materials, methods, and mathematical concepts needed to cover its content, so you will not face any difficulty understanding single chapters. Each chapter: Describes, step-by-step, a specific MADM method, or in some cases a family of methods Contains a thorough literature review for each MADM method, supported with numerous examples of the method's implementation in various fields Provides a detailed yet concise description of each method's theoretical foundation Maps each method's philosophical basis to its corresponding mathematical framework Demonstrates how to implement each MADM method to real-world problems in a variety of disciplines In MADM methods, stakeholders' objectives are expressible through a set of often conflicting criteria, making this family of decision-making approaches relevant to a wide range of situations. A Handbook on Multi-Attribute Decision-Making Methods compiles and explains the most important methodologies in a clear and systematic manner, perfect for students and professionals whose work involves operations research and decision making.

Decision Making in Manufacturing Environment Using Graph Theory and Fuzzy Multiple Attribute Decision Making Methods

This monograph is intended for an advanced undergraduate or graduate course as well as for researchers, who want a compilation of developments in this rapidly growing field of operations research. This is a sequel to our previous works: "Multiple Objective Decision Making--Methods and Applications: A state-of-the-Art Survey" (No.164 of the Lecture Notes); "Multiple Attribute Decision Making--Methods and Applications: A State-of-the-Art Survey" (No.186 of the Lecture Notes); and "Group Decision Making under Multiple Criteria--Methods and Applications" (No.281 of the Lecture Notes). In this monograph, the literature on methods of fuzzy Multiple Attribute Decision Making (MADM) has been reviewed thoroughly and critically, and classified systematically. This study provides readers with a capsule look into the existing methods, their characteristics, and applicability to the analysis of fuzzy MADM problems. The basic concepts and algorithms from the classical MADM methods have been used in the development of the fuzzy MADM methods. We give an overview of the classical MADM in Chapter II. Chapter III presents the basic concepts and mathematical operations of fuzzy set theory with simple numerical examples in a easy-to-read and easy-to-follow manner. Fuzzy MADM methods basically consist of two phases: (1) the aggregation of the performance scores with respect to all the attributes for each alternative, and (2) the rank ordering of the alternatives according to the aggregated scores.

A Practical Development of Multi-attribute Decision Making Using Fuzzy Set Theory

In information technology, the concepts of cost, time, delivery, space, quality, durability, and price have gained greater importance in solving managerial decision-making problems in supply chain models, transportation problems, and inventory control problems. Moreover, competition is becoming tougher in imprecise environments. Neutrosophic sets and logic are gaining significant attention in solving real-life problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistency, and indeterminacy. Neutrosophic Sets in Decision Analysis and Operations Research is a critical, scholarly publication that examines various aspects of organizational research through mathematical equations and algorithms and presents neutrosophic theories and their applications in various optimization fields. Featuring a wide range of topics such as information retrieval, decision making, and matrices, this book is ideal for engineers, technicians, designers, mathematicians, practitioners of mathematics in economy and technology, scientists, academicians, professionals, managers, researchers, and students.

TODIM Method for Multiple Attribute Group Decision Making under 2-Tuple Linguistic Neutrosophic Environment

Multi-objective programming (MOP) can simultaneously optimize multi-objectives in mathematical programming models, but the optimization of multi-objectives triggers the issue of Pareto solutions and
Economics And Mathematical Systems

Where To Download Fuzzy Multiple Attribute Decision Making Methods And Applications Lecture Notes In

functions, and this book includes work by several Spanish authors. The book contains nice and relevant original papers, authored by some of the most outstanding researchers in the field, and since it can

demand of its editors, Radko Mesiar, Tomasa Calvo and Gaspar Mayor. My pleasure also derives from the fact that twenty years ago I was one of the first Spaniards interested in the study of aggregation

particularly welcome. To my knowledge, "Agrega tion Operators. New Trends and Applications" is the first book aiming at generality, and I take it as a honour to write this Foreword in response to the gentle

Logie and in others where uncertainty and imprecision play a relevant role. Since these papers are published in many journals, few books and several proceedings of conferences, books on aggregation are

used for the analysis of fuzzy MADM problems. The basic concepts and algorithms from the classical MADM methods have been used in the development of the fuzzy MADM methods. We give an overview of the classical MADM in Chapter II. Chapter III presents the basic concepts and mathematical operations of fuzzy set theory with simple

numerical examples in a easy-to-read and easy-to-follow manner. Fuzzy MADM methods basically consist of two phases: (1) the aggregation of the performance scores with respect to all the attributes for
each alternative, and (2) the rank ordering of the alternatives according to the aggregated scores.

Multi-Attribute Decision Making

Single valued neutrosophic hesitant fuzzy set has three independent parts, namely the truth membership hesitancy function, indeterminacy membership hesitancy function, and falsity membership hesitancy

function, which are in the form of sets that assume values in the unit interval [0, 1].

Multi-Attribute Decision Making Based on Probabilistic Neutrosophic Hesitant Fuzzy Choquet Aggregation Operators

This monograph is intended for an advanced undergraduate or graduate course as well as for researchers, who want a compilation of developments in this rapidly growing field of operations research. This is a

sequel to our previous works: "Multiple Objective Decision Making--Methods and Applications: A state-of-the-Art Survey" (No.164 of the Lecture Notes); "Multiple Attribute Decision Making--Methods and Applications: A State-of-the-Art Survey" (No.186 of the Lecture Notes); and "Group Decision Making under Multiple Criteria--Methods and Applications" (No.281 of the Lecture Notes). In this monograph, the literature on methods of fuzzy Multiple Attribute Decision Making (MADM) has been reviewed thoroughly and critically, and classified systematically. This study provides readers with a capsule look into the existing methods, their characteristics, and applicability to the analysis of fuzzy MADM problems. The basic concepts and algorithms from the classical MADM methods have been used in the development of the fuzzy MADM methods. We give an overview of the classical MADM in Chapter II. Chapter III presents the basic concepts and mathematical operations of fuzzy set theory with simple

numerical examples in a easy-to-read and easy-to-follow manner. Fuzzy MADM methods basically consist of two phases: (1) the aggregation of the performance scores with respect to all the attributes for
each alternative, and (2) the rank ordering of the alternatives according to the aggregated scores.

Fuzzy Multi-attribute Decision-making

Decision makers are often faced with several conflicting alternatives. How do they evaluate trade-offs when there are more than three criteria? To help people make optimal decisions, scholars in the discipline

of multiple criteria decision making (MCDM) continue to develop new methods for structuring preferences and determining the correct relative weights for criteria. A compilation of modern decision-making

techniques, Multiple Attribute Decision Making: Methods and Applications focuses on the fuzzy set approach to multiple attribute decision making (MADM). Drawing on their experience, the authors bring
together current methods and real-life applications of MADM techniques for decision analysis. They also propose a novel hybrid MADM model that combines DEMATEL and analytic network process (ANP)

with VIKOR procedures. The first part of the book focuses on the theory of each method and includes examples that can be calculated without a computer, providing a complete understanding of the

procedures. Methods include the analytic hierarchy process (AHP), ANP, simple additive weighting method, ELECTRE, PROMETHEE, the gray relational model, fuzzy integral technique, rough sets, and the

structural model. Integrating theory and practice, the second part of the book illustrates how methods can be used to solve real-world MADM problems. Applications covered in the book include: AHP to

select planning and design services for a construction project TOPSIS and VIKOR to evaluate the best alternative-fuel vehicles for urban areas ELECTRE to solve network design problems in urban

transportation planning PROMETEE to set priorities for the development of new energy systems, from solar thermal to hydrogen energy Fuzzy integrals to evaluate enterprise intranet web sites Rough sets to

make decisions in insurance marketing Helping readers understand how to apply MADM techniques to their decision making, this book is suitable for undergraduate and graduate students as well as

practitioners.

Decision Making in the Manufacturing Environment

1. The increasing number of research papers appeared in the last years that either make use of aggregation functions or contribute to its theoretical study asses its growing importance in the field of Fuzzy

Logie and in others where uncertainty and imprecision play a relevant role. Since these papers are pub lished in many journals, few books and several proceedings of conferences, books on aggregation are

particularly welcome. To my knowledge, "Aggregation Operators. New Trends and Applications" is the first book aiming at generality, and I take it as a honour to write this Foreword in response to the gentle

demand of its editors, Radko Mesiar, Tomasa Calvo and Gaspar Mayor. My pleasure also derives from the fact that twenty years ago I was one of the first Spaniards interested in the study of aggregation

functions, and this book includes work by several Spanish authors. The book contains nice and relevant original papers, authored by some of the most outstanding researchers in the field, and since it can
serve, as the editors point out in the Preface, as a small handbook on aggregation, the book is very useful for those entering the subject for the first time. The book also contains apart dealing with potential areas of application, so it can be helpful in gaining insight on the future developments.

**TOPSIS Strategy for Multi-Attribute Decision Making with Trapezoidal Neutrosophic Numbers**

Decision Making in Manufacturing Environment Using Graph Theory and Fuzzy Multiple Attribute Decision Making Methods presents the concepts and details of applications of MADM methods. A range of methods are covered including Analytic Hierarchy Process (AHP), Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), Vísekriterijumsko Kompromisno Rangiranje (VIKOR), Data Envelopment Analysis (DEA), Preference Ranking Method for Enrichment Evaluations (PROMETHEE), ELimination Et Choix Traduisant la Réalité (ELECTRE), COmplex PRoportional ASsessment (COPRAS), Grey Relational Analysis (GRA), UTility Additive (UTA), and Ordered Weighted Averaging (OWA). The existing MADM methods are improved upon and three novel multiple attribute decision making methods for solving the decision making problems of the manufacturing environment are proposed. The concept of integrated weights is introduced in the proposed subjective and objective integrated weights (SOIW) method and the weighted Euclidean distance based approach (WEDBA) to consider both the decision maker's subjective preferences as well as the distribution of the attributes data of the decision matrix. These methods, which use fuzzy logic to convert the qualitative attributes into the quantitative attributes, are supported by various real-world application examples. Also, computer codes for AHP, TOPSIS, DEA, PROMETHEE, ELECTRE, COPRAS, and SOIW methods are included. This comprehensive coverage makes Decision Making in Manufacturing Environment Using Graph Theory and Fuzzy Multiple Attribute Decision Making Methods a key reference for the designers, manufacturing engineers, practitioners, managers, institutes involved in both design and manufacturing related projects. It is also an ideal study resource for applied research workers, academicians, and students in mechanical and industrial engineering.

**Uncertain Multi-Attribute Decision Making**

In this article, we extend the original TODIM (Portuguese acronym for Interactive Multi-Criteria Decision Making) method to the 2-tuple linguistic neutrosophic fuzzy environment to propose the 2TLNNs TODIM method. In the extended method, we use 2-tuple linguistic neutrosophic numbers (2TLNNs) to present the criteria values in multiple attribute group decision making (MAGDM) problems.

**Fuzzy Multiple Objective Decision Making**

Multi-objective programming (MOP) can simultaneously optimize multi-objectives in mathematical programming models, but the optimization of multi-objectives triggers the issue of Pareto solutions and complicates the derived answers. To address these problems, researchers often incorporate the concepts of fuzzy sets and evolutionary algorithms into MOP models. Focusing on the methodologies and applications of this field, Fuzzy Multiple Objective Decision Making presents mathematical tools for complex decision making. The first part of the book introduces the most popular methods used to calculate the solution of MOP in the field of multiple objective decision making (MODM). The authors describe multi-objective evolutionary algorithms; expand de novo programming to changeable spaces, such as decision and objective spaces; and cover network data envelopment analysis. The second part focuses on various applications, giving readers a practical, in-depth understanding of MODM. A follow-up to the authors' Multiple Attribute Decision Making: Methods and Applications, this book guides practitioners in using MODM methods to make effective decisions. It also extends student's knowledge of the methods and provides researchers with the foundation to publish papers in operations research and management science journals.

**A Fuzzy Multi-attribute Decision Making Approach for the Identification of the Key Sectors of an Economy**

This book shows how graph theory and matrix approach, and fuzzy multiple attribute decision making methods can be used in manufacturing. It proposes a methodology that will make decision making in the manufacturing environment structured and systematic. The book uses case studies to present the applications of decision making methods in real manufacturing situations.

**Implementasi Konsep Decision Support System & Fuzzy Multiple Attribute Decision Making (Fmadm)**

Decision makers are often faced with several conflicting alternatives. How do they evaluate trade-offs when there are more than three criteria? To help people make optimal decisions, scholars in the discipline of multiple criteria decision making (MCDM) continue to develop new methods for structuring preferences and determining the correct relative weights for criteria. A compilation of modern decision-making techniques, Multiple Attribute Decision Making: Methods and Applications focuses on the fuzzy set approach to multiple attribute decision making (MADM). Drawing on their experience, the authors bring
Development of a new fuzzy multiple attribute decision making approach and its application to decision making in ship design and shipbuilding

Decision making is the process of determining the best course of action from a finite set of available alternatives. The major concern is that almost all decision problems have multiple, usually conflicting criteria. Research on how to solve such multiple criteria decision making (MCDM) problems has been enormous. These problems are broadly classified into two categories: multiple Attribute Decision making (MADM) or multiple attribute analysis, and Multiple objective Decision Making (MODM) or multiple criteria optimisation. MADM is associated with problems whose number of alternatives has been predetermined and the MADM methods are management decision aids in evaluating and/or selecting a desired one from the finite number of alternatives, which are characterised by multiple attributes. The decision maker is to select/prioritise/rank a finite number of courses of action (or alternatives). On the other hand, MODM is not associated with problems in which the alternatives have been predetermined. The decision maker's primary concern is to design a most promising alternative with respect to limited resources. Current ship-building MADM situations are characterised by the following interrelated problems: Imprecise data, Most of the real world decision making problems involve vagueness and fuzziness and the decision maker has the difficult task to choose among the many alternatives and to specify the optimal alternative. In many cases the decision maker (or expert) has inexact information about the alternatives with respect to an attribute. The classical MADM methods cannot effectively handle problems with such imprecise information. It is obvious that the Rij value (or rating) cannot be assessed precisely. The imprecision may come from different sources such as incomplete information, unquantifiable information, or non-obtainable information etc. The mixture of fuzzy and crisp data, In real world decision making problems, decision data of MADM problems are usually fuzzy, crisp or mixture of them. Involvement of multiple decision makers, Most of the ship-building problems involve the work of a team of experts or specialists (technology experts, design engineers, ship owners, etc.) and are focused on an analysis and evaluation of attributes of decision making process. Attribute based expert weighting, In general, the importance of each expert is not equal. Sometimes there are important experts in decision group, such as the executive manager of a shipyard, or some experts who are more experienced than others, the final decision is influenced by the different importance of each expert. Hence, a useful decision model is to provide the ability to handle above-mentioned problems. It is obvious that much knowledge in the real world is fuzzy rather than precise. Decision making is one of the subjects to which Fuzzy Set Theory (FST), which was first introduced by Zadeh to deal with vague, imprecise, and uncertain knowledge, has been successfully applied to in recent years. Various approaches to different aspects of decision problems with vague data have been published. It has been proved that FST provides a sophisticated framework for describing and processing uncertain or imprecise information in decision problems. Fuzzy multiple Attribute Decision Making (FMADM) methods have been developed to solve MADM problems, which contain fuzzy data. FMADM is a subcategory of Fuzzy Multiple Criteria Decision Making (FMCDM). FMCDM can be classified as Fuzzy Multiple Objective Decision Making (FMODM) and FMADM; the former emphasises on continuous decision making spaces and it mainly deals with multiple objective mathematical programming problems; the latter mainly deals with discrete decision making space problems. The study of FMADM problems is still in its infancy and still has a lot of room for improvement. After a systematic and critical study of the existing FMADM methods, the drawbacks of them have been assessed from a practical point of view in this research. These drawbacks certainly limit their applicability to real world (ship-building) MADM problems. The objective of this research is to overcome the difficulties found in FADM methods and to contribute to the development of an MADM method with multipledecision makers, capable of working in a fuzzy environment. The proposed FMADM method is designed to overcome the aforementioned difficulties so that MADM problems can be meaningfully and efficiently solved in a fuzzy environment. The basic assumption of the proposed method is that the MADM problem may contain fuzzy and crisp data and it may consist of multiple decision maker (or expert) with the difference degree of importance. The thesis discusses the theoretical background of the proposed method and presents the application of it to two real shipbuilding case studies, demonstrating the versatility and potential of the proposed method for solving FMADM problems. The proposed method is composed of three major states as described below. Rating state, In the rating state of the proposed method, each expert for decision maker) gives his/her opinions (or performance ratings) about alternatives with respect to each subjective attribute. The first state aims to convert fuzzy data into standardised positive trapezoidal fuzzy numbers. If the fuzzy data are linguistic terms, they are transformed into fuzzy numbers first by using appropriate conversion scale and then converted to standardised positive trapezoidal fuzzy numbers. Attribute based aggregation state. In the second state, attribute based aggregation method for heterogeneous group of experts is employed. Aggregation is necessary only for subjective attributes. After the weights of attributes and the importance of experts are assigned, under each subjective attribute all performance ratings are aggregated for each alternative. Selection state. In the last state of the proposed approach, all fuzzy elements of the aggregated decision matrix are defuzzified in the defuzzification phase. The result of this phase is a decision matrix, which contains only crisp data. Then the alternatives of the problem are ranked by TOPSIS (Technique for Order Preference by Similarity to Ideal Solution), which is a classical MADM method. In this dissertation, two real case studies are carried out. The first one is a system (propulsion/manoeuvring system) selection under fuzzy environment and the second one is a component (ship main engine) selection under semi-fuzzy environment. From the work carried out in this thesis, the two main contributions have been reached. They are classified as contributions to "multiple attribute decision making theory" and contributions to "naval architecture" points of view. Development of a new FMADM method is the first focus and contribution of this dissertation. From the
decision theory point of view, the proposed method has the following achievements: It is an entire MADM model which combines FMADM methodologies with GDM techniques. The proposed method is very suitable for solving the multiple attributive GDM problems under fuzzy environment. The proposed method enables the researchers to incorporate homo/heterogeneous group of experts with the different degrees of importance into the FMADM models. The majority of classical MADM methods are capable of handling large MADM problems. The proposed approach extends that ability to the fuzzy problems with multiple experts domain. It is a new FMADM method that is easy to use and to understand, and the algorithm of the proposed approach is also easy to be coded into a computer program due to the stepwise description. The second concern and contribution of this dissertation is to show the applicability of the proposed method into the naval architecture MADM problems. From the naval architecture point of view, the following can be concluded: As illustrated in the real-life examples, the proposed method is a generalised model which can be applied to great variety of practical problems encountered in the naval architecture from propulsion/manoeuvring system selection to warship requirements definition. As the application grows, the real value of fuzzy decision making tools will find more widespread use, as most of the practical problems from design to production involve the aggregation of rational and fuzzy elements in harmony. Such an approach will also assist the use of optimisation by placing them within the correct context in problem solving and hence will avoid sub-system or sub-attribute optimisation problems. Finally, the proposed method can efficiently help the decision makers and engineers to make decisions in real-world. And it can provide a useful way to solve the selection problems in a fuzzy environment. It is a versatile and flexible system, which covers a vast variety of FMADM problems. This research also concludes by highlighting future directions for research in this area.

Multiple-Attribute Decision-Making Method Based on Normalized Geometric Aggregation Operators of Single-Valued Neutrosophic Hesitant Fuzzy Information


Hesitant Fuzzy Sets Theory

Decision Making in Manufacturing Environment Using Graph Theory and Fuzzy Multiple Attribute Decision Making Methods presents the concepts and details of applications of MADM methods. A range of methods are covered including Analytic Hierarchy Process (AHP), Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), Višekriterijumsko Kompromisno Rangiranje (VIKOR), Data Envelopment Analysis (DEA), Preference Ranking METHOD for Enrichment Evaluations (PROMETHEE), ELimination Et Choix Traduisant la Réalité (ELECTRE), COMplex Proportional ASSessment (COPRAS), Grey Relational Analysis (GRA), UTility ADDitive (UTA), and ORDERed Weighted AVERAGEing (OWA). The existing MADM methods are improved upon and three novel multiple attribute decision making methods for solving the decision making problems of the manufacturing environment are proposed. The concept of integrated weights is introduced in the proposed subjective and objective integrated weights (SOIW) method and the weighted Euclidean distance based approach (WEDBA) to consider both the decision maker's subjective preferences as well as the distribution of the attributes data of the decision matrix. These methods, which use fuzzy logic to convert the qualitative attributes into the quantitative attributes, are supported by various real-world application examples. Also, computer codes for AHP, TOPSIS, DEA, PROMETHEE, ELECTRE, COPRAS, and SOIW methods are included. This comprehensive coverage makes Decision Making in Manufacturing Environment Using Graph Theory and Fuzzy Multiple Attribute Decision Making Methods a key reference for the designers, manufacturing engineers, practitioners, managers, institutes involved in both design and manufacturing related projects. It is also an ideal study resource for applied research workers, academicians, and students in mechanical and industrial engineering.

Multiple Attribute Decision Making Algorithm via Picture Fuzzy Nano Topological Spaces

This book provides the readers with a thorough and systematic introduction to hesitant fuzzy theory. It presents the most recent research results and advanced methods in the field. These includes: hesitant fuzzy aggregation techniques, hesitant fuzzy preference relations, hesitant fuzzy measures, hesitant fuzzy clustering algorithms and hesitant fuzzy multi-attribute decision making methods. Since its introduction by Torra and Narukawa in 2009, hesitant fuzzy sets have become more and more popular and have been used for a wide range of applications, from decision-making problems to cluster analysis, from medical diagnosis to personnel appraisal and information retrieval. This book offers a comprehensive report on the state-of-the-art in hesitant fuzzy sets theory and applications, aiming at becoming a reference guide for both researchers and practitioners in the area of fuzzy mathematics and other applied research fields (e.g. operations research, information science, management science and engineering) characterized by uncertainty ("hesitant") information. Because of its clarity and self-contained explanations, the book can also be adopted as a textbook from graduate and advanced undergraduate students.

Several Intuitionistic Fuzzy Multi-Attribute Decision Making Methods and Their Applications
Multiple Attribute Decision Making with Mixed Numerical and Fuzzy Data

This monograph is intended for an advanced undergraduate or graduate course as well as for the researchers who want a compilation of developments in this rapidly growing field of operations research. This is a sequel to our previous work entitled “Multiple Objective Decision Making–Methods and Applications: A State-of-the-Art Survey,” (No. 164 of the Lecture Notes). The literature on methods and applications of Multiple Attribute Decision Making (MADM) has been reviewed and classified systematically. This study provides readers with a capsule look into the existing methods, their characteristics, and applicability to analysis of MADM problems. The basic MADM concepts are defined and a standard notation is introduced in Part 11. Also introduced are foundations such as models for MADM, transformation of attributes, fuzzy decision rules, and methods for assessing weight. A system of classifying seventeen major MADM methods is presented. These methods have been proposed by researchers in diversified disciplines; half of them are classical ones, but the other half have appeared recently. The basic concept, the computational procedure, and the characteristics of each of these methods are presented concisely in Part 111. The computational procedure of each method is illustrated by solving a simple numerical example. Part IV of the survey deals with the applications of these MADM methods.

Multi-Attribute Decision-Making Based on Preference Perspective with Interval Neutrosophic Sets in Venture Capital

The book offers a comprehensive survey of interval-valued intuitionistic fuzzy sets. It reports on cutting-edge research carried out by the founder of the intuitionistic fuzzy sets, Prof. Krassimir Atanassov, giving a special emphasis to the practical applications of this extension. A few interesting case studies, such as in the area of data mining, decision making and pattern recognition, among others, are discussed in detail. The book offers the first comprehensive guide on interval-valued intuitionistic fuzzy sets. By providing the readers with a thorough survey and important practical details, it is expected to support them in carrying out applied research and to encourage them to test the theory behind the sets for new advanced applications. The book is a valuable reference resource for graduate students and researchers alike.

A Method for Multiple Attribute Decision-making with the Fuzzy Preference Relation on Alternatives in Selecting the Best House

Take the third-party logistics providers (3PLs) as an example, according to the characteristics of correlation between attributes in multi-attribute decision-making, two Choquet aggregation operators adopting probabilistic neutrosophic hesitation fuzzy elements (PNHFEs) are proposed to cope with the situations of correlation among criterions. This measure not only provides support for the correlation phenomenon between internal attributes, but also fully concerns the incidental uncertainty of the external space. Our goal is to make it easier for decision makers to cope with this uncertainty, thus we establish the notion of probabilistic neutrosophic hesitant fuzzy Choquet averaging (geometric) (PNHFCOA, PNHFCOG) operator. Based on this foundation, a method for aggregating decision makers’ information is proposed, and then the optimal decision scheme is obtained. Finally, an example of selecting optimal 3PL is given to demonstrate the objectivity of the above-mentioned standpoint.

Multi-objective Group Decision Making

Neutrosophic Sets in Decision Analysis and Operations Research

This book presents 27 methods of the Multiple Attribute Decision Making (MADM), which are not discussed in the existing books, nor studied in details, using more applications. Nowadays, decision making is one of the most important and fundamental tasks of management as an organizational goal achievement that depends on its quality. Decision making includes the correct expression of objectives, determining different and possible solutions, evaluating their feasibility, assessing the consequences, and the results of implementing each solution, and finally, selecting and implementing the solution. Multiple Criteria Decision Making (MCDM) is sum of the decision making techniques. MCDM is divided into the Multiple Objective Decision Making (MODM) for designing the best solution and MADM for selecting the best alternative. Given that the applications of MADM are mostly more than MODM, wide various techniques have been developed for MADM by researchers over the last 60 years, and the current book introduces some of the other new MADM methods.

Interval-Valued Intuitionistic Fuzzy Sets

Multiple Attribute Decision Making
GRA Method of Multiple Attribute Decision Making with Single Valued Neutrosophic Hesitant Fuzzy Set Information

Picture fuzzy nano topological spaces is an extension of intuitionistic fuzzy nano topological spaces. Every decision in life ends with an answer such as yes or no, or true or false, but we have an another component called abstain, which we have not yet considered. This work is a gateway to study such a problem. This paper motivates an enquiry of the third component - abstain - in practical problems. The aim of this paper is to investigate the contemporary notion of picture fuzzy nano topological spaces and explore some of its properties. The stated properties are quantified with numerical data. Furthermore, an algorithm for Multiple Attribute Decision-Making (MADM) with an application regarding the file selection of building material under uncertainty by using picture fuzzy nano topological spaces is developed. As a practical problem, a comparison table is presented to show the difference between the novel concept and the existing methods.

Fuzzy Multi-criteria Decision-Making Using Neutrosophic Sets

Multiple Attribute Decision Making

This book introduces methods for uncertain multi-attribute decision making including uncertain multi-attribute group decision making and their applications to supply chain management, investment decision making, personnel assessment, redesigning products, maintenance services, military system efficiency evaluation. Multi-attribute decision making, also known as multi-objective decision making with finite alternatives, is an important component of modern decision science. The theory and methods of multi-attribute decision making have been extensively applied in engineering, economics, management and military contexts, such as venture capital project evaluation, facility location, bidding, development ranking of industrial sectors and so on. Over the last few decades, great attention has been paid to research on multi-attribute decision making in uncertain settings, due to the increasing complexity and uncertainty of supposedly objective aspects and the fuzziness of human thought. This book can be used as a reference guide for researchers and practitioners working in e.g. the fields of operations research, information science, management science and engineering. It can also be used as a textbook for postgraduate and senior undergraduate students.

Decision Making with Spherical Fuzzy Sets

Fuzzy Multiple Attribute Decision Making

This book offers a comprehensive guide to the use of neutrosophic sets in multiple criteria decision making problems. It shows how neutrosophic sets, which have been developed as an extension of fuzzy and paraconsistent logic, can help in dealing with certain types of uncertainty that classical methods could not cope with. The chapters, written by well-known researchers, report on cutting-edge methodologies they have been developing and testing on a variety of engineering problems. The book is unique in its kind as it reports for the first time and in a comprehensive manner on the joint use of neutrosophic sets together with existing decision making methods to solve multi-criteria decision-making problems, as well as other engineering problems that are complex, hard to model and/or include incomplete and vague data. By providing new ideas, suggestions and directions for the solution of complex problems in engineering and decision making, it represents an excellent guide for researchers, lecturers and postgraduate students pursuing research on neutrosophic decision making, and more in general in the area of industrial and management engineering.

Fuzzy Multiple Objective Decision Making

This book proposes a set of models to describe fuzzy multi-objective decision making (MODM), fuzzy multi-criteria decision making (MCDM), fuzzy group decision making (GDM) and fuzzy multi-objective group decision-making problems, respectively. It also gives a set of related methods (including algorithms) to solve these problems. One distinguishing feature of this book is that it provides two decision support systems software for readers to apply these proposed methods. A set of real-world applications and some new directions in this area are then described to further instruct readers how to use these methods and software in their practice.

Fuzzy Multiple Attribute Decision Making
This work examines all the fuzzy multicriteria methods recently developed, such as fuzzy AHP, fuzzy TOPSIS, interactive fuzzy multiobjective stochastic linear programming, fuzzy multiobjective dynamic programming, grey fuzzy multiobjective optimization, fuzzy multiobjective geometric programming, and more. Each of the 22 chapters includes practical applications along with new developments/results. This book may be used as a textbook in graduate operations research, industrial engineering, and economics courses. It will also be an excellent resource, providing new suggestions and directions for further research, for computer programmers, mathematicians, and scientists in a variety of disciplines where multicriteria decision making is needed.

**New Methods and Applications in Multiple Attribute Decision Making (MADM)**

As a generalization of both single-valued neutrosophic element and hesitant fuzzy element, single-valued neutrosophic hesitant fuzzy element (SVNHFE) is an efficient tool for describing uncertain and imprecise information. Thus, it is of great significance to deal with single-valued neutrosophic hesitant fuzzy information for many practical problems. In this paper, we study the aggregation of SVNHFEs based on some normalized operations from geometric viewpoint. Firstly, two normalized operations are defined for processing SVNHFEs. Then, a series of normalized aggregation operators which fulfill some basic conditions of a valid aggregation operator are proposed. Additionally, a decision-making method is developed for resolving multi-attribute decision-making problems based on the proposed operators.