
Stochastic Processes Comprehensive presentation of the technical aspects and applications of the theory of structured dependence between random processes.

Probability and Computing Hidden Markov Models for Bioinformatics

Markov Chains and Stochastic Stability This book provides an undergraduate-level introduction to discrete and continuous-time Markov chains and their applications, with a particular focus on the first step analysis technique and its applications to average hitting times and ruin probabilities. It also discusses classical topics such as recurrence and transience, stationary and limiting distributions, as well as branching processes. It first examines in detail two important examples (gambling processes and random walks) before presenting the general theory itself in the subsequent chapters. It also provides an introduction to discrete-time martingales and their relation to ruin probabilities and mean exit times, together with a chapter on spatial Poisson processes. The concepts presented are illustrated by examples, 138 exercises and 9 problems with their solutions.

Foundations of Data Science Understanding Probability is a unique and stimulating approach to a first course in probability. The first part of the book demystifies probability and uses many wonderful probability applications from everyday life to help the reader develop a feel for probabilities. The second part, covering a wide range of topics, teaches clearly and simply the basics of probability. This fully revised third edition has been packed with even more exercises and examples and it includes new sections on Bayesian inference, Markov chain Monte-Carlo simulation, hitting probabilities in random walks and Brownian motion, and a new chapter on continuous-time Markov chains with applications. Here you will find all the material taught in an introductory probability course. The first part of the book, with its easy-going style, can be read by anybody with a reasonable background in high school mathematics. The second part of the book requires a basic course in calculus.

The Analysis of Selected Algorithms for the Stochastic Paradigm This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics
include the counterintuitive nature of data in high dimensions, important linear algebraic
techniques such as singular value decomposition, the theory of random walks and Markov
chains, the fundamentals of and important algorithms for machine learning, algorithms and
analysis for clustering, probabilistic models for large networks, representation learning
including topic modelling and non-negative matrix factorization, wavelets and compressed
sensing. Important probabilistic techniques are developed including the law of large
numbers, tail inequalities, analysis of random projections, generalization guarantees in
machine learning, and moment methods for analysis of phase transitions in large random
graphs. Additionally, important structural and complexity measures are discussed such as
matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate
courses in the design and analysis of algorithms for data.

Markov Chains and Stochastic Stability Probability theory, like much of mathematics, is
indebted to physics as a source of problems and intuition for solving these problems.
Unfortunately, the level of abstraction of current mathematics often makes it difficult for
anyone but an expert to appreciate this fact. Random Walks and electric networks looks at
the interplay of physics and mathematics in terms of an example—the relation between
elementary electric network theory and random walks —where the mathematics involved is
at the college level.

Understanding Markov Chains A leading authority sheds light on a variety of interesting
topics in which probability theory plays a key role.

Secondary Analysis of Electronic Health Records Building upon the previous editions, this
textbook is a first course in stochastic processes taken by undergraduate and graduate
students (MS and PhD students from math, statistics, economics, computer science,
engineering, and finance departments) who have had a course in probability theory. It
covers Markov chains in discrete and continuous time, Poisson processes, renewal
processes, martingales, and option pricing. One can only learn a subject by seeing it in
action, so there are a large number of examples and more than 300 carefully chosen
exercises to deepen the reader’s understanding. Drawing from teaching experience and
student feedback, there are many new examples and problems with solutions that use TI-83
to eliminate the tedious details of solving linear equations by hand, and the collection of
exercises is much improved, with many more biological examples. Originally included in
previous editions, material too advanced for this first course in stochastic processes has
been eliminated while treatment of other topics useful for applications has been expanded.
In addition, the ordering of topics has been improved; for example, the difficult subject of
martingales is delayed until its usefulness can be applied in the treatment of mathematical
finance.

Probability and Statistics by Example: Volume 2, Markov Chains: A Primer in Random
Processes and Their Applications

Statistical Analysis of Stochastic Processes in Time This book covers the classical theory of
Markov chains on general state-spaces as well as many recent developments. The
theoretical results are illustrated by simple examples, many of which are taken from Markov
Chain Monte Carlo methods. The book is self-contained, while all the results are carefully
and concisely proven. Bibliographical notes are added at the end of each chapter to provide
an overview of the literature. Part I lays the foundations of the theory of Markov chain on
general states-space. Part II covers the basic theory of irreducible Markov chains on general
states-space, relying heavily on regeneration techniques. These two parts can serve as a text
on general state-space applied Markov chain theory. Although the choice of topics is quite
different from what is usually covered, where most of the emphasis is put on countable state
space, a graduate student should be able to read almost all these developments without any
mathematical background deeper than that needed to study countable state space (very
little measure theory is required). Part III covers advanced topics on the theory of
irreducible Markov chains. The emphasis is on geometric and subgeometric convergence
rates and also on computable bounds. Some results appeared for a first time in a book and
others are original. Part IV are selected topics on Markov chains, covering mostly hot recent developments.

Finite Markov Chains and Algorithmic Applications In this 2002 book, the author develops the necessary background in probability theory and Markov chains then discusses important computing applications.

Introduction to Hidden Semi-Markov Models Probabilistic models are becoming increasingly important in analysing the huge amount of data being produced by large-scale DNA-sequencing efforts such as the Human Genome Project. For example, hidden Markov models are used for analysing biological sequences, linguistic-grammar-based probabilistic models for identifying RNA secondary structure, and probabilistic evolutionary models for inferring phylogenies of sequences from different organisms. This book gives a unified, up-to-date and self-contained account, with a Bayesian slant, of such methods, and more generally to probabilistic methods of sequence analysis. Written by an interdisciplinary team of authors, it aims to be accessible to molecular biologists, computer scientists, and mathematicians with no formal knowledge of the other fields, and at the same time present the state-of-the-art in this new and highly important field.

Stochastic Networks A clear explanation of what an explosive Markov chain does after it passes through all available states in finite time.

Fundamentals of the Theory of Structured Dependence between Stochastic Processes Covers fundamental and applied results of Markov chain analysis for the evaluation of dependability metrics, for graduate students and researchers.

Generators of Markov Chains Provides methods of analysing Markov chains based on Lyapunov functions.

Markov Chains and Dependability Theory This definitive textbook provides a solid introduction to discrete and continuous stochastic processes, tackling a complex field in a way that instills a deep understanding of the relevant mathematical principles, and develops an intuitive grasp of the way these principles can be applied to modelling real-world systems. It includes a careful review of elementary probability and detailed coverage of Poisson, Gaussian and Markov processes with richly varied queuing applications. The theory and applications of inference, hypothesis testing, estimation, random walks, large deviations, martingales and investments are developed. Written by one of the world's leading information theorists, evolving over twenty years of graduate classroom teaching and enriched by over 300 exercises, this is an exceptional resource for anyone looking to develop their understanding of stochastic processes.

Quasi-Stationary Distributions This introduction to some of the principal models in the theory of disordered systems leads the reader through the basics, to the very edge of contemporary research, with the minimum of technical fuss. Topics covered include random walk, percolation, self-avoiding walk, interacting particle systems, uniform spanning tree, random graphs, as well as the Ising, Potts, and random-cluster models for ferromagnetism, and the Lorentz model for motion in a random medium. This new edition features accounts of major recent progress, including the exact value of the connective constant of the hexagonal lattice, and the critical point of the random-cluster model on the square lattice. The choice of topics is strongly motivated by modern applications, and focuses on areas that merit further research. Accessible to a wide audience of mathematicians and physicists, this book can be used as a graduate course text. Each chapter ends with a range of exercises.

Markov Processes, Gaussian Processes, and Local Times Communication networks underpin our modern world, and provide fascinating and challenging examples of large-scale stochastic systems. Randomness arises in communication systems at many levels: for example, the initiation and termination times of calls in a telephone network, or the statistical structure of the arrival streams of packets at routers in the Internet.
Where To Download Markov Chains University Of Cambridge

routing, flow control and connection acceptance algorithms be designed to work well in
uncertain and random environments? This compact introduction illustrates how stochastic
models can be used to shed light on important issues in the design and control of
communication networks. It will appeal to readers with a mathematical background wishing
to understand this important area of application, and to those with an engineering
background who want to grasp the underlying mathematical theory. Each chapter ends with
exercises and suggestions for further reading.

Approximate Quantum Markov Chains Presents the theory of general irreducible Markov
chains and its connection to the Perron-Frobenius theory of nonnegative operators.

Markov Chains and Dependability Theory This book was first published in 2004. Many
observed phenomena, from the changing health of a patient to values on the stock market,
are characterised by quantities that vary over time: stochastic processes are designed to
study them. This book introduces practical methods of applying stochastic processes to an
audience knowledgeable only in basic statistics. It covers almost all aspects of the subject
and presents the theory in an easily accessible form that is highlighted by application to
many examples. These examples arise from dozens of areas, from sociology through
medicine to engineering. Complementing these are exercise sets making the book suited for
introductory courses in stochastic processes. Software (available from www.cambridge.org)
is provided for the freely available R system for the reader to apply to all the models
presented.

Markov Chains and Mixing Times This volume contains refereed research or review papers
presented at the 6th Seminar on Stochastic Processes, Random Fields and Applications,
which took place at the Centro Stefano Franscini (Monte Verità) in Ascona, Switzerland, in
May 2008. The seminar focused mainly on stochastic partial differential equations,
especially large deviations and control problems, on infinite dimensional analysis, particle
systems and financial engineering, especially energy markets and climate models. The book
will be a valuable resource for researchers in stochastic analysis and professionals
interested in stochastic methods in finance.

Seminar on Stochastic Analysis, Random Fields and Applications VI New up-to-date edition
of this influential classic on Markov chains in general state spaces. Proofs are rigorous and
concise, the range of applications is broad and knowledgeable, and key ideas are accessible
to practitioners with limited mathematical background. New commentary by Sean Meyn,
including updated references, reflects developments since 1996.

Probability: The Classical Limit Theorems This book trains the next generation of scientists
representing different disciplines to leverage the data generated during routine patient
care. It formulates a more complete lexicon of evidence-based recommendations and
support shared, ethical decision making by doctors with their patients. Diagnostic and
therapeutic technologies continue to evolve rapidly, and both individual practitioners and
clinical teams face increasingly complex ethical decisions. Unfortunately, the current state
of medical knowledge does not provide the guidance to make the majority of clinical
decisions on the basis of evidence. The present research infrastructure is inefficient and
frequently produces unreliable results that cannot be replicated. Even randomized
controlled trials (RCTs), the traditional gold standards of the research reliability hierarchy,
are not without limitations. They can be costly, labor intensive, and slow, and can return
results that are seldom generalizable to every patient population. Furthermore, many
pertinent but unresolved clinical and medical systems issues do not seem to have attracted
the interest of the research enterprise, which has come to focus instead on cellular and
molecular investigations and single-agent (e.g., a drug or device) effects. For clinicians, the
end result is a bit of a “data desert” when it comes to making decisions. The new research
infrastructure proposed in this book will help the medical profession to make ethically
sound and well informed decisions for their patients.

Probability on Trees and Networks This text is designed for an introductory probability
course at the university level for sophomores, juniors, and seniors in mathematics, physical and social sciences, engineering, and computer science. It presents a thorough treatment of ideas and techniques necessary for a firm understanding of the subject. The text is also recommended for use in discrete probability courses. The material is organized so that the discrete and continuous probability discussions are presented in a separate, but parallel, manner. This organization does not emphasize an overly rigorous or formal view of probability and therefore offers some strong pedagogical value. Hence, the discrete discussions can sometimes serve to motivate the more abstract continuous probability discussions. Features: Key ideas are developed in a somewhat leisurely style, providing a variety of interesting applications to probability and showing some nonintuitive ideas. Over 600 exercises provide the opportunity for practicing skills and developing a sound understanding of ideas. Numerous historical comments deal with the development of discrete probability. The text includes many computer programs that illustrate the algorithms or the methods of computation for important problems. The book is a beautiful introduction to probability theory at the beginning level. The book contains a lot of examples and an easy development of theory without any sacrifice of rigor, keeping the abstraction to a minimal level. It is indeed a valuable addition to the study of probability theory. --Zentralblatt MATH

Markov Chains

Hidden Markov Models for Bioinformatics The main theme of this book is the interplay between random walks and discrete structure theory.

Biological Sequence Analysis Covering formulation, algorithms, and structural results, and linking theory to real-world applications in controlled sensing (including social learning, adaptive radars and sequential detection), this book focuses on the conceptual foundations of partially observed Markov decision processes (POMDPs). It emphasizes structural results in stochastic dynamic programming, enabling graduate students and researchers in engineering, operations research, and economics to understand the underlying unifying themes without getting weighed down by mathematical technicalities. Bringing together research from across the literature, the book provides an introduction to nonlinear filtering followed by a systematic development of stochastic dynamic programming, lattice programming and reinforcement learning for POMDPs. Questions addressed in the book include: when does a POMDP have a threshold optimal policy? When are myopic policies optimal? How do local and global decision makers interact in adaptive decision making in multi-agent social learning where there is herding and data incest? And how can sophisticated radars and sensors adapt their sensing in real time?

Random Walks and Electric Networks "This textbook is designed to accompany a one- or two-semester course for advanced undergraduates or beginning graduate students in computer science and applied mathematics. - It gives an excellent introduction to the probabilistic techniques and paradigms used in the development of probabilistic algorithms and analyses. - It assumes only an elementary background in discrete mathematics and gives a rigorous yet accessible treatment of the material, with numerous examples and applications."--Jacket.

Topics in the Constructive Theory of Countable Markov Chains Main concepts of quasi-stationary distributions (QSDs) for killed processes are the focus of the present volume. For diffusions, the killing is at the boundary and for dynamical systems there is a trap. The authors present the QSDs as the ones that allow describing the long-term behavior conditioned to not being killed. Studies in this research area started with Kolmogorov and Yaglom and in the last few decades have received a great deal of attention. The authors provide the exponential distribution property of the killing time for QSDs, present the more general result on their existence and study the process of trajectories that survive forever. For birth-and-death chains and diffusions, the existence of a single or a continuum of QSDs is described. They study the convergence to the extremal QSD and give the classification of the survival process. In this monograph, the authors discuss Gibbs QSDs for symbolic
systems and absolutely continuous QSDs for repellers. The findings described are relevant
to researchers in the fields of Markov chains, diffusions, potential theory, dynamical
systems, and in areas where extinction is a central concept. The theory is illustrated with
numerous examples. The volume uniquely presents the distribution behavior of individuals
who survive in a decaying population for a very long time. It also provides the background
for applications in mathematical ecology, statistical physics, computer sciences, and
economics.

Markov Chain Monte Carlo in Practice Starting around the late 1950s, several research
communities began relating the geometry of graphs to stochastic processes on these
graphs. This book, twenty years in the making, ties together research in the field,
ensconcing work on percolation, isoperimetric inequalities, eigenvalues, transition
probabilities, and random walks. Written by two leading researchers, the text emphasizes
intuition, while giving complete proofs and more than 850 exercises. Many recent
developments, in which the authors have played a leading role, are discussed, including
percolation on trees and Cayley graphs, uniform spanning forests, the mass-transport
technique, and connections on random walks on graphs to embedding in Hilbert space. This
state-of-the-art account of probability on networks will be indispensable for graduate
students and researchers alike.

Partially Observed Markov Decision Processes In a family study of breast cancer,
epidemiologists in Southern California increase the power for detecting a gene-environment
interaction. In Gambia, a study helps a vaccination program reduce the incidence of
Hepatitis B carriage. Archaeologists in Austria place a Bronze Age site in its true temporal
location on the calendar scale. And in France,

Understanding Probability This book is an introduction to the modern approach to the
theory of Markov chains. The main goal of this approach is to determine the rate of
convergence of a Markov chain to the stationary distribution as a function of the size and
difficulty of the state space. The authors develop the key tools for estimating convergence
times, including coupling, strong stationary times, and spectral methods. Whenever
possible, probabilistic methods are emphasized. The book includes many examples and
provides brief introductions to some central models of statistical mechanics. Also provided
are accounts of random walks on networks, including hitting and cover times, and analyses
of several methods of shuffling cards. As a prerequisite, the authors assume a modest
understanding of probability theory and linear algebra at an undergraduate level. Markov
Chains and Mixing Times is meant to bring the excitement of this active area of research to
a wide audience.

R-theory and Truncation Algorithms for Markov Chains and Processes For students in pure
and applied probability; lots of applications, fairly self-contained.

General Irreducible Markov Chains and Non-Negative Operators Covers fundamental and
applied results of Markov chain analysis for the evaluation of dependability metrics, for
graduate students and researchers.

Markov Processes and Related Problems of Analysis Develops the theory of Markov and semi-
Markov processes in an elementary setting suitable for senior undergraduate and graduate
students.

Introduction to Probability The subject is critical in many modern applications such as
mathematical finance, quantitative management, insurance and actuarial studies.

Probability on Graphs This book was first published in 2006. Written by two of the foremost
researchers in the field, this book studies the local times of Markov processes by employing
isomorphism theorems that relate them to certain associated Gaussian processes. It builds
to this material through self-contained but harmonized 'mini-courses' on the relevant
ingredients, which assume only knowledge of measure-theoretic probability. The
streamlined selection of topics creates an easy entrance for students and experts in related fields. The book starts by developing the fundamentals of Markov process theory and then of Gaussian process theory, including sample path properties. It then proceeds to more advanced results, bringing the reader to the heart of contemporary research. It presents the remarkable isomorphism theorems of Dynkin and Eisenbaum and then shows how they can be applied to obtain new properties of Markov processes by using well-established techniques in Gaussian process theory. This original, readable book will appeal to both researchers and advanced graduate students.

Essentials of Stochastic Processes This book is an introduction to quantum Markov chains and explains how this concept is connected to the question of how well a lost quantum mechanical system can be recovered from a correlated subsystem. To achieve this goal, we strengthen the data-processing inequality such that it reveals a statement about the reconstruction of lost information. The main difficulty in order to understand the behavior of quantum Markov chains arises from the fact that quantum mechanical operators do not commute in general. As a result we start by explaining two techniques of how to deal with non-commuting matrices: the spectral pinching method and complex interpolation theory. Once the reader is familiar with these techniques a novel inequality is presented that extends the celebrated Golden-Thompson inequality to arbitrarily many matrices. This inequality is the key ingredient in understanding approximate quantum Markov chains and it answers a question from matrix analysis that was open since 1973, i.e., if Lieb’s triple matrix inequality can be extended to more than three matrices. Finally, we carefully discuss the properties of approximate quantum Markov chains and their implications. The book is aimed to graduate students who want to learn about approximate quantum Markov chains as well as more experienced scientists who want to enter this field. Mathematical majority is necessary, but no prior knowledge of quantum mechanics is required.

Markov Chains This book analyses selected algorithms for random and stochastic phenomena in the areas of basic probability, random variables, mathematical expectation, special probability and statistical distributions, random processes, and Markov chains. It also presents a novel approach, titled the “Complex Probability Paradigm”, and applies it to the Brownian motion. As such, the book will be of interest to all scholars, researchers, and undergraduate and graduate students in mathematics, computer science, and science in general.

Random Walks on Infinite Graphs and Groups The theory of Markov Processes has become a powerful tool in partial differential equations and potential theory with important applications to physics. Professor Dynkin has made many profound contributions to the subject and in this volume are collected several of his most important expository and survey articles. The content of these articles has not been covered in any monograph as yet. This account is accessible to graduate students in mathematics and operations research and will be welcomed by all those interested in stochastic processes and their applications.

Copyright code: c97c4574b5db35efabf29cada923eb98