Sulzer Marine Diesel Engines | a0b6b4ab1b35c8676376c8d102f56f76

Pounder's Marine Diesel Engines
The Diesel Engine
A History of the Sulzer Low-speed Marine Diesel Engine
Development of Sulzer Marine Diesel Engines
Sulzer Marine Diesel Engines
Pounder's Marine Diesel Engines and Gas Turbines
The Latest Sulzer Marine Diesel Engine Technology
RTA Diesel Engines for Land and Marine Work
Modern Sulzer Marine Two-stroke Crosshead Diesel Engines
SBC 7.1 Standard Bridge Control System for RT Marine Diesel Engines
RTA Two-stroke Marine Diesel Engines
General Technical Data RTA 76 and RTA 84
Marine Propulsion Diesel Engines
Sulzer Two-cycle Diesel Marine Engines
List of Motorships in Commission and Under Construction Equipped with Sulzer Two-stroke Marine Diesel Engines Excluding Ships Under 3,000 Deadweight
Description and Working Instructions for the Airless Injection Sulzer Two-cycle Marine Diesel Engine with Hydraulically Controlled Reverse Gear
The Shipbuilder and Marine Engine-builder
Low Speed Marine Diesel Engines
Pounder's Marine Diesel Engines and Gas Turbines
Diesel Engines for Land and Marine Work
Sulzer RTA Diesel Engines for Ice-breaking Cargo Ships
Description and Instructions for the Sulzer Two-cycle Diesel Marine Engines with Mechanical Injections
Diesel Engines for Land and Marine Work
Sulzer Diesel Engines for Land and Marine Work
The Present Status of the Diesel Engine in Europe, and a Few Reminiscences of the Pioneer Work in America
Land and Marine Diesel Engines
Marine--locomotive--stationary
Internal Combustion
This revised edition of Taylor's classic work on the internal-combustion engine incorporates changes and additions in engine design and control that have been brought on by the world petroleum crisis, the subsequent emphasis on fuel economy, and the legal restraints on air pollution. The fundamentals and the topical organization, however, remain the same. The analytic rather than merely descriptive treatment of actual engine cycles, the exhaustive studies of air capacity, heat flow, friction, and the effects of cylinder size, and the emphasis on application have been preserved. These are the basic qualities that have made Taylor's work indispensable to more than one generation of engineers and designers of internal-combustion engines, as well as to teachers and graduate students in the fields of power, internal-combustion engineering, and general machine design.
into currently available engines and auxiliary equipment and trends for the future. This new edition introduces new engine models that will be most commonly installed in ships over the next decade, as well as the latest legislation and pollutant emissions procedures. Since publication of the last edition in 2009, a number of emission control areas (ECAs) have been established by the International Maritime Organization (IMO) in which exhaust emissions are subject to even more stringent controls. In addition, there are now rules that affect new ships and their emission of CO2 measured as a product of cargo carried.

Provides the latest emission control technologies, such as SCR and water scrubbers
Contains complete updates of legislation and pollutant emission procedures Includes the latest emission control technologies and expands upon remote monitoring and control of engines

Pounder's Marine Diesel Engines, Sixth Edition focuses on developments in diesel engines. The book first discusses theory and general principles. Theoretical heat cycle, practical cycles, thermal and mechanical efficiency, working cycles, fuel consumption, vibration, and horsepower are considered. The text takes a look at engine selection and performance, including direct and indirect drive, maximum rating, exhaust temperatures, derating, mean effective pressures, fuel coefficient, propeller performance, and power build-up. The book also examines pressure charging. Matching of turboblowers, blower surge, turbocharger types,
constant pressure method, impulse turbocharging method, and scavenging are discussed. The text describes fuel injection, Sulzer, MAN, and Burmeister and Wain engines. The selection also considers Mitsubishi, GMT, and Doxford engines. The text then focuses on fuels and fuel chemistry; operation, monitoring, and maintenance; significant operating problems; and engine installation. Engine seatings and alignment, reaction measurements, crankcase explosions, main engine crankshaft defects, bearings, fatigue, and overhauling and maintenance are discussed. The book is a good source of information for readers wanting to study diesel engines.

This book provides profound and detailed information about every kind of Marine Diesel Engines until WW I. It covers the entire range from small engines for pleasure crafts up to the largest engines for seagoing ships. With many pictures and drawings.

Since its first appearance in 1950, Pounder's Marine Diesel Engines has served seagoing engineers, students of the Certificates of Competency examinations and the marine engineering industry throughout the world. Each new edition has noted the changes in engine
design and the influence of new technology and economic needs on the marine diesel engine. Now in its ninth edition, Pounder’s retains the directness of approach and attention to essential detail that characterized its predecessors. There are new chapters on monitoring control and HiM SEN engines as well as information on developments in electronic-controlled fuel injection. It is fully updated to cover new legislation including that on emissions and provides details on enhancing overall efficiency and cutting CO2 emissions. After experience as a seagoing engineer with the British India Steam Navigation Company, Doug Woodyard held editorial positions with the Institution of Mechanical Engineers and the Institute of Marine Engineers. He subsequently edited The Motor Ship journal for eight years before becoming a freelance editor specializing in shipping, shipbuilding and marine engineering. He is currently technical editor of Marine Propulsion and Auxiliary Machinery, a contributing editor to Speed at Sea, Shipping World and Shipbuilder and a technical press consultant to Rolls-Royce Commercial Marine. * Helps engineers to understand the latest changes to marine diesel engines * Careful organisation of the new edition enables readers to access the information they require * Brand new chapters focus on monitoring control systems and HiM SEN engines. * Over 270 high quality, clearly labelled illustrations and figures to aid understanding and help engineers quickly identify what they need to know.

Describes and illustrates the major features of
the diesel engine, emphasizing the low speed type. Stresses the comprehension of the engine required for the application of the engines to ship propulsion rather than mere description or analysis of principles. Topics covered include: interactions with propeller and with hull; mounting in the ship; problems of noise and vibration; and machinery arrangement. Maintenance, fuels, and auxiliary systems are also analyzed as part of the concerns of a propulsion designer.

Since its first appearance in 1950, Pounder's Marine Diesel Engines has served seagoing engineers, students of the Certificates of Competency examinations and the marine engineering industry throughout the world. Each new edition has noted the changes in engine design and the influence of new technology and economic needs on the marine diesel engine. This eighth edition retains the directness of approach and attention to essential detail that characterized its predecessors. There are new chapters on monitoring control systems and governor systems, gas turbines and safety aspects of engine operation. Important developments such as the latest diesel-electric LNG carriers that will soon be in operation. After experience as a seagoing engineer with the British India Steam Navigation Company, Doug Woodyard held editorial positions with the Institution of Mechanical Engineers and the Institute of Marine Engineers.
He subsequently edited The Motor Ship journal for eight years before becoming a freelance editor specializing in shipping, shipbuilding and marine engineering. He is currently technical editor of Seatrade, a contributing editor to Speed at Sea, Shipping World and Shipbuilder and a technical press consultant to Rolls-Royce Commercial Marine. *Designed to reflect the recent changes to SQA/Marine and Coastguard Agency Certificate of Competency exams. Careful organisation of the new edition enables readers to access the information they require* Brand new chapters focus on monitoring control systems and governor systems, gas turbines and safety aspects of engine operation. *High quality, clearly labelled illustrations and figures*

"Sulzer is persuaded that two stroke cross head engines are suitable and economic prime movers for large size arctic merchant vessels. It is, however, a fact, that any diesel machinery arrangement designed to deal with arctic requirements would be more sophisticated than installations for open sea operation only. For smaller sized vessels and special ships such as pure icebreakers, Sulzer has the widest background of arctic experiences of any diesel engine designer. All those vessels have been equipped with medium-speed engines of 4-stroke or 2-stroke design. For future ship projects of this size and duty requiring up to some 50'000 BHP
total output, Sulzer will continue to recommend the reliable medium speed Z/ZA engine as prime mover. Solutions for diesel-propelled merchant ships for arctic conditions are mainly influenced by the individual power requirements and the ambient conditions. It is essential to go somewhat deeper into this - for most engine operators a well-known topic - than one would normally do, to explain solutions for engine arrangement in ship installations and its operation. The main problem was to obtain the torque characteristic dictated by the fixed pitch propeller - ideal for "ice-milling" - by an engine not capable of producing torque at low or even zero speed. The solution was the diesel-electric power transmission with an electric motor driving the propeller, having a similar torque characteristic as the steam engine. Physically, the diesel electric power transmission works as a torque converter. The question was open whether there would be an alternative torque converter or not; realistic solutions could have been: Hydraulic torque converter between diesel engine(s) and propeller; Fitting a controllable pitch propeller. For the high shaft ratings required, only the controllable pitch propeller solution is feasible. The present state of the art concerning cp-propellers knows how to deal with arctic ice requirements and service experience exists. Sulzer is persuaded that two stroke cross head engines are suitable and economic prime movers for large size arctic merchant vessels. It is, however, a fact, that any diesel machinery arrangement designed to deal with arctic requirements would be more sophisticated than installations for open sea operation only. For
smaller sized vessels and special ships such as pure icebreakers, Sulzer has the widest background of arctic experiences of any diesel engine designer. All those vessels have been equipped with medium-speed engines of 4-stroke or 2-stroke design. For future ship projects of this size and duty requiring up to some 50000 BHP total output, Sulzer will continue to recommend the reliable medium speed Z/ZA engine as prime mover. Solutions for diesel-propelled merchant ships for arctic conditions are mainly influenced by the individual power requirements and the ambient conditions. It is essential to go somewhat deeper into this - for most engine operators a well-known topic - than one would normally do, to explain solutions for engine arrangement in ship installations and its operation"--ASTIS database.